

Interfaces cerveau-machine chez les patients en état de conscience altérée: intérêts et perspectives

Manon Carrière, neuropsychologue Doctorante Coma Science Group GIGA Consciousness Université de Liège, Belgium

« Application des technologies innovantes dans les états de conscience altérée »

France Traumatisme Crânien Paris, 9 novembre 2018

Interfaces cerveau-machine, pour qui et pour quoi?

Locked-in Syndrome (LIS)

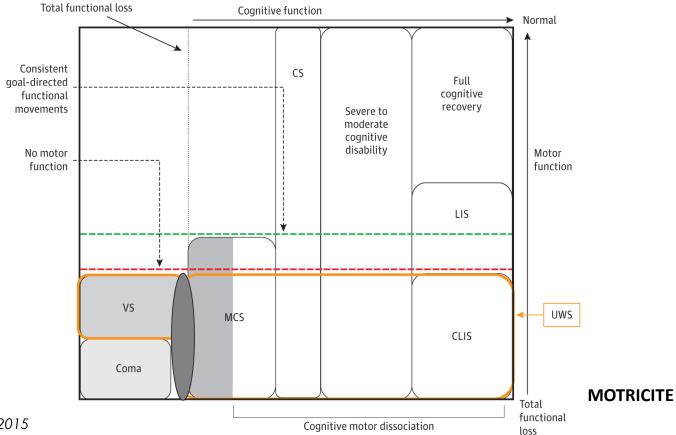
- Diagnostic
- Communication
- Qualité de vie

Patients en état de conscience altérée (ECA)

Diagnostic: détection d'une conscience résiduelle "cachée »

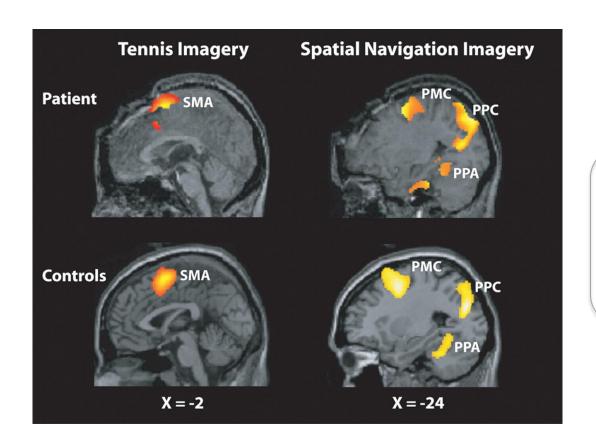
Dissociation cognitivo-motrice

- > Déficits moteurs (paralysie, spasticité)
- > Troubles cognitifs (aphasie, apraxie)
- > Troubles sensoriels (cécite, surdité)
- > Fatigabilité, fluctuations de l'éveil


Patient:	Date:						
AUDITORY FUNCTIO	ON SCALE						
4 - Consistent Moveme	nt to Command *						
3 - Reproducible Mover	ment to Command *						
2 - Localization to Sour	nd						
1 - Auditory Startle							
0 - None							
VISUAL FUNCTION	SCALE						
5 - Object Recognition	*		$\overline{}$	$\overline{}$	\top	$\overline{}$	
4 - Object Localization:							
3 - Visual Pursuit *	- watering						
2 - Visual Pursuit				_	+		
2 10000011				_	-		
1 - Visual Startle		-		_	-	-	
0 - None							_
MOTOR FUNCTION					_		
6 - Functional Object U	se						
5 - Automatic Motor Re	sponse *						
4 - Object Manipulation *							
3 - Localization to Noxious Stimulation *							
2 - Flexion Withdrawal							
1 - Abnormal Posturing							П
0 - None/Flaccid							
OROMOTOR/VERB	AL FUNCTION SCALE				-	_	
3 - Intelligible Verbaliza	tion *						
2 - Vocalization/Oral M							
1 - Oral Reflexive Move	ment				-		
0 - None COMMUNICATION :					_		
2 - Functional: Accurat							
1 - Non-Functional: Int					_		
0 - Non-Punctional: Int	erional				_		
AROUSAL SCALE						_	
3 - Attention							
2 - Eye Opening w/p St	imulation						
1 - Eye Opening with S	timulation						
0 - Unarousable							

Giacino et al, 2004

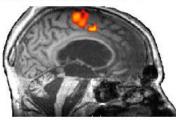
♥ Taux élevé d'erreur diagnostique (20-30%)


Interfaces cerveau-machine, pour qui et pour quoi?

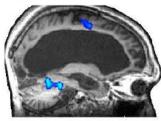
COGNITION

IRM fonctionnelle: réponse à la commande


- Jeune femme de 23 ans
- 5 mois post-trauma
- Diagnostic comportemental = ENR
- Deux tâches d'imagerie mentale:
- motrice (tennis)
- navigation spatiale (maison)


IRM fonctionnelle: communication

Imagine Tennis to answer 'YES' Imagine Navigating to answer 'NO'


Is your father's name Alexander ?

Is your father's name Thomas ?

54 patients (23 ENR, 31 ECM)

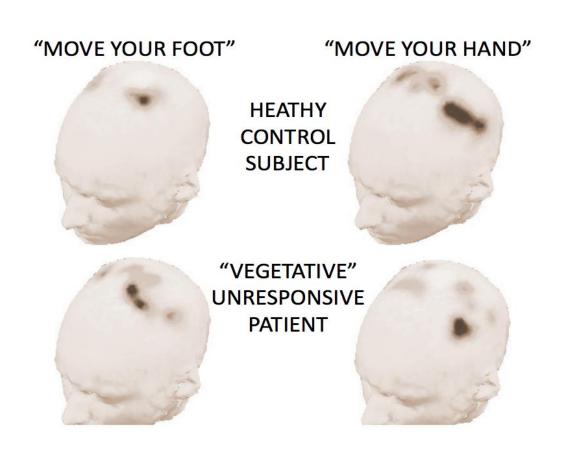
16 sujets contrôles

1) Réponse à la commande:

-5/54 (4 ENR, 1 ECM, TBI)

-Tâche motrice = 5/5; tâche spatiale = 4/5

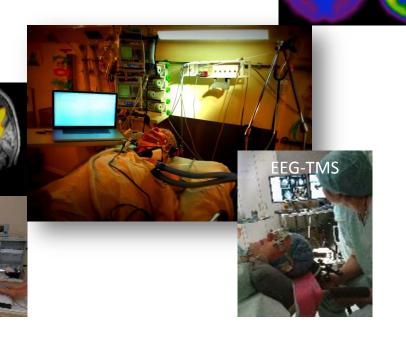
-Réévaluation comportementale : 2/4


2) Communication:

-un patient

-5/6 questions autobiographiques oui/non

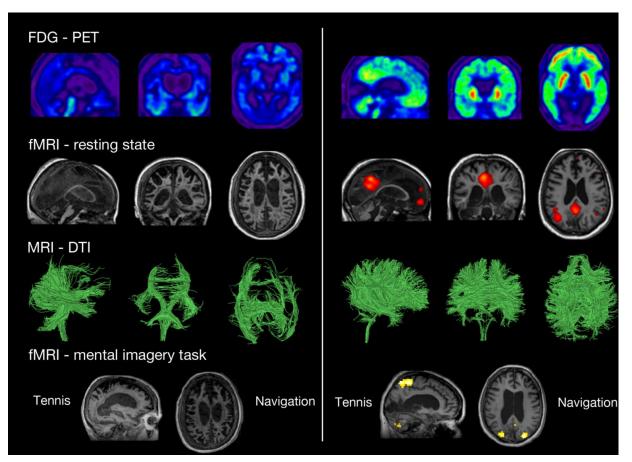
EEG: Réponse à la commande


- ➤ 16 patients ENR (5 trauma, 11 non-trauma):
- 3/16 (19%)
- 2/5 trauma, 1/11 non-trauma

 Cruse et al., Lancet 2011
 - > 23 patients ECM (15 trauma, 8 non-trauma):
- 7/23 (30%)
- 7/15 trauma, 0/8 non-trauma

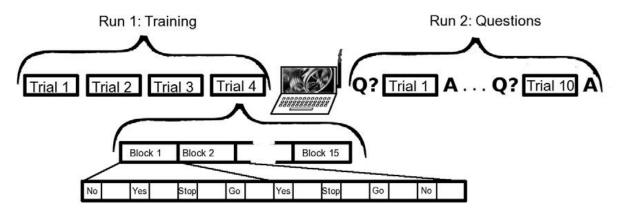
Bilan diagnostique multimodal à Liège

MRI



FDG-PET

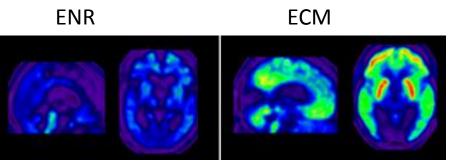
Illustration par un cas clinique


Interfaces cerveau-machine et ECA: Paradigme oddball basé sur la P300

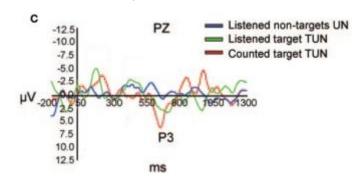
- 16 sujets contrôles
- 18 patients (3 ENR, 13 ECM, 2 LIS)
- Paradigme auditif oddball basé sur P300
- 4 stimuli : yes, no, stop, go
- 10-12 questions

RESULTATS

- Réponse à la commande : 1 ECM
- Communication: 13 sujets contrôles
- + 1 LIS

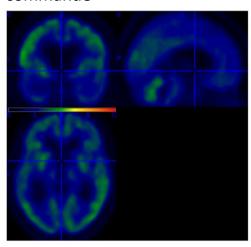


Interfaces cerveau-machine: P300 & métabolisme cérébral

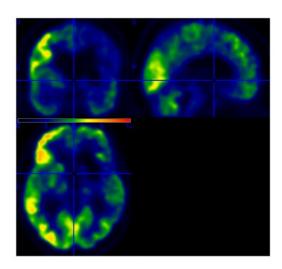


12 patients ECA sans réponse à la commande 8 ENR, 4 ECM-

- FDG-PET
 - → Métabolisme du glucose
- P300
 - Vibrotactile 2: 2 stimuli, dont 1 déviant (1/8)
 70% Vrai positif = bonne performance
 - Vibrotactile 3: 3 stimuli, dont 2 déviants
 - phase d'entrainement :réponse à la commande
 - communication

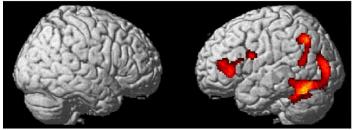


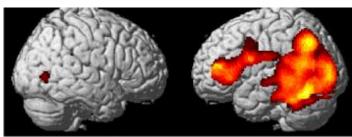
Interfaces cerveau-machine: P300 & métabolisme cérébral



Un patient ECM- (8%) avec réponse a la commande (VT2 100% - VT3 70%) 1/6 réponse correcte (et détectée) pour la communication

SUV moyen des patients avec PET-ECM, sans réponse à la commande




SUV du patient avec réponse à la commande

Réseau langagier gauche patient avec réponse à la commande (covert) > patients ECM sans réponse à la commande

Annen et al., Frontiers in neuroscience, 2018

Interfaces cerveau-machine: multimodalité

Paradigmes auditifs et vibrotactiles

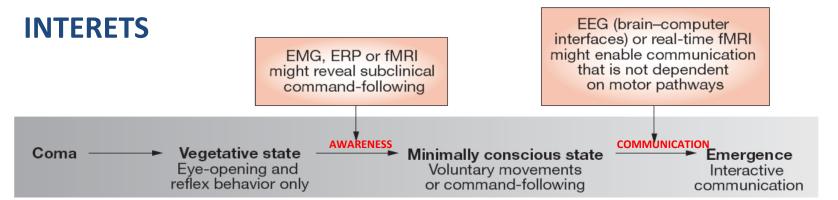
- **P**300
- auditif & vibrotactile
- 50 patients ECA, 10 volontaires sains

RESULTAT:

Indépendance des performances aux deux paradigmes

CONCLUSION:

- ⇒ Importance des approches multimodales
- ⇒ Mesures adaptées aux limitations individuelles


ECA & interfaces cerveau-machine

Problèmes	Solutions potentielles				
Fatigabilité, capacités mnésique et attentionnelle limitées	/!\ charge cognitive (équilibre à trouver), rappel des instructions avant chaque essai				
Déficits auditifs/visuels	potentiels évoqués visuels vs. auditifs vs. tactile				
Fluctuation de la vigilance	répétition des évaluations, réduction de la durée des enregistrements, stimulation verbale, surveillance de l'ouverture des yeux				
Artefacts musculaires, mouvements des yeux	Amélioration de la technologie (diminuer la sensibilité du système, auto-correction du signal)				
Désorientation, confusion	Pour la communication : questions simples, réponses connue				
Faux négatifs	Importance de la multimodalité				

Conclusions

Laureys & Boly, Nature Clinical Practice, 2008

PERSPECTIVES

- 1) Interprétation des faux négatifs
- 2) Que faire avec les positifs si communication ? Ethique (décisions de fin de vie, capacité de jugement du patient)

MERCI DE VOTRE ATTENTION!

